Paper Reading AI Learner

Running Time Analysis of the -EA for OneMax and LeadingOnes under Bit-wise Noise

2022-11-28 09:01:06
Chao Qian, Chao Bian, Wu Jiang, Ke Tang

Abstract

In many real-world optimization problems, the objective function evaluation is subject to noise, and we cannot obtain the exact objective value. Evolutionary algorithms (EAs), a type of general-purpose randomized optimization algorithm, have been shown to be able to solve noisy optimization problems well. However, previous theoretical analyses of EAs mainly focused on noise-free optimization, which makes the theoretical understanding largely insufficient for the noisy case. Meanwhile, the few existing theoretical studies under noise often considered the one-bit noise model, which flips a randomly chosen bit of a solution before evaluation; while in many realistic applications, several bits of a solution can be changed simultaneously. In this paper, we study a natural extension of one-bit noise, the bit-wise noise model, which independently flips each bit of a solution with some probability. We analyze the running time of the (1+1)-EA solving OneMax and LeadingOnes under bit-wise noise for the first time, and derive the ranges of the noise level for polynomial and super-polynomial running time bounds. The analysis on LeadingOnes under bit-wise noise can be easily transferred to one-bit noise, and improves the previously known results. Since our analysis discloses that the (1+1)-EA can be efficient only under low noise levels, we also study whether the sampling strategy can bring robustness to noise. We prove that using sampling can significantly increase the largest noise level allowing a polynomial running time, that is, sampling is robust to noise.

Abstract (translated)

URL

https://arxiv.org/abs/1711.00956

PDF

https://arxiv.org/pdf/1711.00956.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot