Paper Reading AI Learner

The Impact of Racial Distribution in Training Data on Face Recognition Bias: A Closer Look

2022-11-26 07:03:24
Manideep Kolla, Aravinth Savadamuthu

Abstract

Face recognition algorithms, when used in the real world, can be very useful, but they can also be dangerous when biased toward certain demographics. So, it is essential to understand how these algorithms are trained and what factors affect their accuracy and fairness to build better ones. In this study, we shed some light on the effect of racial distribution in the training data on the performance of face recognition models. We conduct 16 different experiments with varying racial distributions of faces in the training data. We analyze these trained models using accuracy metrics, clustering metrics, UMAP projections, face quality, and decision thresholds. We show that a uniform distribution of races in the training datasets alone does not guarantee bias-free face recognition algorithms and how factors like face image quality play a crucial role. We also study the correlation between the clustering metrics and bias to understand whether clustering is a good indicator of bias. Finally, we introduce a metric called racial gradation to study the inter and intra race correlation in facial features and how they affect the learning ability of the face recognition models. With this study, we try to bring more understanding to an essential element of face recognition training, the data. A better understanding of the impact of training data on the bias of face recognition algorithms will aid in creating better datasets and, in turn, better face recognition systems.

Abstract (translated)

URL

https://arxiv.org/abs/2211.14498

PDF

https://arxiv.org/pdf/2211.14498.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot