Paper Reading AI Learner

Adjustable Method Based on Body Parts for Improving the Accuracy of 3D Reconstruction in Visually Important Body Parts from Silhouettes

2022-11-27 13:25:02
Aref Hemati, Azam Bastanfard

Abstract

This research proposes a novel adjustable algorithm for reconstructing 3D body shapes from front and side silhouettes. Most recent silhouette-based approaches use a deep neural network trained by silhouettes and key points to estimate the shape parameters but cannot accurately fit the model to the body contours and consequently are struggling to cover detailed body geometry, especially in the torso. In addition, in most of these cases, body parts have the same accuracy priority, making the optimization harder and avoiding reaching the optimum possible result in essential body parts, like the torso, which is visually important in most applications, such as virtual garment fitting. In the proposed method, we can adjust the expected accuracy for each body part based on our purpose by assigning coefficients for the distance of each body part between the projected 3D body and 2D silhouettes. To measure this distance, we first recognize the correspondent body parts using body segmentation in both views. Then, we align individual body parts by 2D rigid registration and match them using pairwise matching. The objective function tries to minimize the distance cost for the individual body parts in both views based on distances and coefficients by optimizing the statistical model parameters. We also handle the slight variation in the degree of arms and limbs by matching the pose. We evaluate the proposed method with synthetic body meshes from the normalized S-SCAPE. The result shows that the algorithm can more accurately reconstruct visually important body parts with high coefficients.

Abstract (translated)

URL

https://arxiv.org/abs/2211.14822

PDF

https://arxiv.org/pdf/2211.14822.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot