Paper Reading AI Learner

On the Effectiveness of Parameter-Efficient Fine-Tuning

2022-11-28 17:41:48
Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai Lam, Lidong Bing, Nigel Collier

Abstract

Fine-tuning pre-trained models has been ubiquitously proven to be effective in a wide range of NLP tasks. However, fine-tuning the whole model is parameter inefficient as it always yields an entirely new model for each task. Currently, many research works propose to only fine-tune a small portion of the parameters while keeping most of the parameters shared across different tasks. These methods achieve surprisingly good performance and are shown to be more stable than their corresponding fully fine-tuned counterparts. However, such kind of methods is still not well understood. Some natural questions arise: How does the parameter sparsity lead to promising performance? Why is the model more stable than the fully fine-tuned models? How to choose the tunable parameters? In this paper, we first categorize the existing methods into random approaches, rule-based approaches, and projection-based approaches based on how they choose which parameters to tune. Then, we show that all of the methods are actually sparse fine-tuned models and conduct a novel theoretical analysis of them. We indicate that the sparsity is actually imposing a regularization on the original model by controlling the upper bound of the stability. Such stability leads to better generalization capability which has been empirically observed in a lot of recent research works. Despite the effectiveness of sparsity grounded by our theory, it still remains an open problem of how to choose the tunable parameters. To better choose the tunable parameters, we propose a novel Second-order Approximation Method (SAM) which approximates the original problem with an analytically solvable optimization function. The tunable parameters are determined by directly optimizing the approximation function. The experimental results show that our proposed SAM model outperforms many strong baseline models and it also verifies our theoretical analysis.

Abstract (translated)

URL

https://arxiv.org/abs/2211.15583

PDF

https://arxiv.org/pdf/2211.15583.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot