Paper Reading AI Learner

Approximating Intersections and Differences Between Statistical Shape Models

2022-11-29 15:54:34
Maximilian Weiherer, Finn Klein, Bernhard Egger

Abstract

To date, the comparison of Statistical Shape Models (SSMs) is often solely performance-based and carried out by means of simplistic metrics such as compactness, generalization, or specificity. Any similarities or differences between the actual shape spaces can neither be visualized nor quantified. In this paper, we present a first method to compare two SSMs in dense correspondence by computing approximate intersection spaces and set-theoretic differences between the affine vector spaces spanned by the models. To this end, we approximate the distribution of shapes lying in the intersection space using Markov Chain Monte Carlo, and then apply Principal Component Analysis (PCA) to its samples. By representing the resulting spaces again as an SSM, our method enables an easy and intuitive analysis of similarities between two model's shape spaces. We estimate differences between SSMs in a similar manner; here, however, the resulting shape spaces are not linear vector spaces anymore and we do not apply PCA but instead use the posterior samples for visualization. We showcase the proposed algorithm qualitatively by computing and analyzing intersection spaces and differences between publicly available face models focusing on gender-specific male and female as well as identity and expression models. Our quantitative evaluation based on SSMs built from synthetic and real-world data sets provides detailed evidence that the introduced method is able to recover ground-truth intersection spaces and differences. Finally, we demonstrate that the proposed algorithm can be easily adapted to also compute intersections and differences between color spaces.

Abstract (translated)

URL

https://arxiv.org/abs/2211.16314

PDF

https://arxiv.org/pdf/2211.16314.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot