Paper Reading AI Learner

Which Shortcut Solution Do Question Answering Models Prefer to Learn?

2022-11-29 13:57:59
Kazutoshi Shinoda, Saku Sugawara, Akiko Aizawa

Abstract

Question answering (QA) models for reading comprehension tend to learn shortcut solutions rather than the solutions intended by QA datasets. QA models that have learned shortcut solutions can achieve human-level performance in shortcut examples where shortcuts are valid, but these same behaviors degrade generalization potential on anti-shortcut examples where shortcuts are invalid. Various methods have been proposed to mitigate this problem, but they do not fully take the characteristics of shortcuts themselves into account. We assume that the learnability of shortcuts, i.e., how easy it is to learn a shortcut, is useful to mitigate the problem. Thus, we first examine the learnability of the representative shortcuts on extractive and multiple-choice QA datasets. Behavioral tests using biased training sets reveal that shortcuts that exploit answer positions and word-label correlations are preferentially learned for extractive and multiple-choice QA, respectively. We find that the more learnable a shortcut is, the flatter and deeper the loss landscape is around the shortcut solution in the parameter space. We also find that the availability of the preferred shortcuts tends to make the task easier to perform from an information-theoretic viewpoint. Lastly, we experimentally show that the learnability of shortcuts can be utilized to construct an effective QA training set; the more learnable a shortcut is, the smaller the proportion of anti-shortcut examples required to achieve comparable performance on shortcut and anti-shortcut examples. We claim that the learnability of shortcuts should be considered when designing mitigation methods.

Abstract (translated)

URL

https://arxiv.org/abs/2211.16220

PDF

https://arxiv.org/pdf/2211.16220.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot