Paper Reading AI Learner

Research on the application of contrastive learning in multi-label text classification

2022-12-01 15:00:16
Nankai Lin, Guanqiu Qin, Jigang Wang, Aimin Yang, Dong Zhou

Abstract

The effective application of contrastive learning technology in natural language processing tasks shows the superiority of contrastive learning in text analysis tasks. How to construct positive and negative samples correctly and reasonably is the core challenge of contrastive learning. Since it is difficult to construct contrastive objects in multi-label multi-classification tasks, there are few contrastive losses for multi-label multi-classification text classification. In this paper, we propose five contrastive losses for multi-label multi-classification tasks. They are Strict Contrastive Loss (SCL), Intra-label Contrastive Loss (ICL), Jaccard Similarity Contrastive Loss (JSCL), and Jaccard Similarity Probability Contrastive Loss (JSPCL) and Stepwise Label Contrastive Loss (SLCL). We explore the effectiveness of contrastive learning for multi-label multi-classification tasks under different strategies, and provide a set of baseline methods for contrastive learning techniques on multi-label classification tasks. We also perform an interpretability analysis of our approach to show how different contrastive learning methods play their roles. The experimental results in this paper demonstrate that our proposed contrastive losses can bring some improvement for multi-label multi-classification tasks. Our work reveal how to "appropriately" change the contrastive way of contrastive learning is the key idea to improve the adaptability of contrastive learning in multi-label multi-classification tasks.

Abstract (translated)

URL

https://arxiv.org/abs/2212.00552

PDF

https://arxiv.org/pdf/2212.00552.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot