Paper Reading AI Learner

Understanding the Robustness of Multi-Exit Models under Common Corruptions

2022-12-03 07:33:56
Akshay Mehra, Skyler Seto, Navdeep Jaitly, Barry-John Theobald

Abstract

Multi-Exit models (MEMs) use an early-exit strategy to improve the accuracy and efficiency of deep neural networks (DNNs) by allowing samples to exit the network before the last layer. However, the effectiveness of MEMs in the presence of distribution shifts remains largely unexplored. Our work examines how distribution shifts generated by common image corruptions affect the accuracy/efficiency of MEMs. We find that under common corruptions, early-exiting at the first correct exit reduces the inference cost and provides a significant boost in accuracy ( 10%) over exiting at the last layer. However, with realistic early-exit strategies, which do not assume knowledge about the correct exits, MEMs still reduce inference cost but provide a marginal improvement in accuracy (1%) compared to exiting at the last layer. Moreover, the presence of distribution shift widens the gap between an MEM's maximum classification accuracy and realistic early-exit strategies by 5% on average compared with the gap on in-distribution data. Our empirical analysis shows that the lack of calibration due to a distribution shift increases the susceptibility of such early-exit strategies to exit early and increases misclassification rates. Furthermore, the lack of calibration increases the inconsistency in the predictions of the model across exits, leading to both inefficient inference and more misclassifications compared with evaluation on in-distribution data. Finally, we propose two metrics, underthinking and overthinking, that quantify the different behavior of practical early-exit strategy under distribution shifts, and provide insights into improving the practical utility of MEMs.

Abstract (translated)

URL

https://arxiv.org/abs/2212.01562

PDF

https://arxiv.org/pdf/2212.01562.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot