Paper Reading AI Learner

VISEM-Tracking: Human Spermatozoa Tracking Dataset

2022-12-06 09:25:52
Vajira Thambawita, Steven A. Hicks, Andrea M. Storås, Thu Nguyen, Jorunn M. Andersen, Oliwia Witczak, Trine B. Haugen, Hugo L. Hammer, Pål Halvorsen, Michael A. Riegler

Abstract

Manually analyzing spermatozoa is a tremendous task for biologists due to the many fast-moving spermatozoa, causing inconsistencies in the quality of the assessments. Therefore, computer-assisted sperm analysis (CASA) has become a popular solution. Despite this, more data is needed to train supervised machine learning approaches in order to improve accuracy and reliability. In this regard, we provide a dataset called VISEM-Tracking with 20 video recordings of 30s of spermatozoa with manually annotated bounding-box coordinates and a set of sperm characteristics analyzed by experts in the domain. VISEM-Tracking is an extension of the previously published VISEM dataset. In addition to the annotated data, we provide unlabeled video clips for easy-to-use access and analysis of the data. As part of this paper, we present baseline sperm detection performances using the YOLOv5 deep learning model trained on the VISEM-Tracking dataset. As a result, the dataset can be used to train complex deep-learning models to analyze spermatozoa. The dataset is publicly available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2212.02842

PDF

https://arxiv.org/pdf/2212.02842.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot