Paper Reading AI Learner

Few-View Object Reconstruction with Unknown Categories and Camera Poses

2022-12-08 18:59:02
Hanwen Jiang, Zhenyu Jiang, Kristen Grauman, Yuke Zhu

Abstract

While object reconstruction has made great strides in recent years, current methods typically require densely captured images and/or known camera poses, and generalize poorly to novel object categories. To step toward object reconstruction in the wild, this work explores reconstructing general real-world objects from a few images without known camera poses or object categories. The crux of our work is solving two fundamental 3D vision problems -- shape reconstruction and pose estimation -- in a unified approach. Our approach captures the synergies of these two problems: reliable camera pose estimation gives rise to accurate shape reconstruction, and the accurate reconstruction, in turn, induces robust correspondence between different views and facilitates pose estimation. Our method FORGE predicts 3D features from each view and leverages them in conjunction with the input images to establish cross-view correspondence for estimating relative camera poses. The 3D features are then transformed by the estimated poses into a shared space and are fused into a neural radiance field. The reconstruction results are rendered by volume rendering techniques, enabling us to train the model without 3D shape ground-truth. Our experiments show that FORGE reliably reconstructs objects from five views. Our pose estimation method outperforms existing ones by a large margin. The reconstruction results under predicted poses are comparable to the ones using ground-truth poses. The performance on novel testing categories matches the results on categories seen during training. Project page: this https URL

Abstract (translated)

URL

https://arxiv.org/abs/2212.04492

PDF

https://arxiv.org/pdf/2212.04492.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot