Paper Reading AI Learner

Ego Vehicle Speed Estimation using 3D Convolution with Masked Attention

2022-12-11 07:22:25
Athul M. Mathew, Thariq Khalid

Abstract

Speed estimation of an ego vehicle is crucial to enable autonomous driving and advanced driver assistance technologies. Due to functional and legacy issues, conventional methods depend on in-car sensors to extract vehicle speed through the Controller Area Network bus. However, it is desirable to have modular systems that are not susceptible to external sensors to execute perception tasks. In this paper, we propose a novel 3D-CNN with masked-attention architecture to estimate ego vehicle speed using a single front-facing monocular camera. To demonstrate the effectiveness of our method, we conduct experiments on two publicly available datasets, nuImages and KITTI. We also demonstrate the efficacy of masked-attention by comparing our method with a traditional 3D-CNN.

Abstract (translated)

URL

https://arxiv.org/abs/2212.05432

PDF

https://arxiv.org/pdf/2212.05432.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot