Paper Reading AI Learner

Graph Learning: A Comprehensive Survey and Future Directions

2022-12-17 22:05:07
Shaopeng Wei, Yu Zhao


Graph learning aims to learn complex relationships among nodes and the topological structure of graphs, such as social networks, academic networks and e-commerce networks, which are common in the real world. Those relationships make graphs special compared with traditional tabular data in which nodes are dependent on non-Euclidean space and contain rich information to explore. Graph learning developed from graph theory to graph data mining and now is empowered with representation learning, making it achieve great performances in various scenarios, even including text, image, chemistry, and biology. Due to the broad application prospects in the real world, graph learning has become a popular and promising area in machine learning. Thousands of works have been proposed to solve various kinds of problems in graph learning and is appealing more and more attention in academic community, which makes it pivotal to survey previous valuable works. Although some of the researchers have noticed this phenomenon and finished impressive surveys on graph learning. However, they failed to link related objectives, methods and applications in a more logical way and cover current ample scenarios as well as challenging problems due to the rapid expansion of the graph learning.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot