Paper Reading AI Learner

A Survey of Mix-based Data Augmentation: Taxonomy, Methods, Applications, and Explainability

2022-12-21 09:58:14
Chengtai Cao, Fan Zhou, Yurou Dai, Jianping Wang

Abstract

Data augmentation (DA) is indispensable in modern machine learning and deep neural networks. The basic idea of DA is to construct new training data to improve the model's generalization by adding slightly disturbed versions of existing data or synthesizing new data. In this work, we review a small but essential subset of DA -- Mix-based Data Augmentation (MixDA) that generates novel samples by mixing multiple examples. Unlike conventional DA approaches based on a single-sample operation or requiring domain knowledge, MixDA is more general in creating a broad spectrum of new data and has received increasing attention in the community. We begin with proposing a new taxonomy classifying MixDA into, Mixup-based, Cutmix-based, and hybrid approaches according to a hierarchical view of the data mix. Various MixDA techniques are then comprehensively reviewed in a more fine-grained way. Owing to its generalization, MixDA has penetrated a variety of applications which are also completely reviewed in this work. We also examine why MixDA works from different aspects of improving model performance, generalization, and calibration while explaining the model behavior based on the properties of MixDA. Finally, we recapitulate the critical findings and fundamental challenges of current MixDA studies, and outline the potential directions for future works. Different from previous related works that summarize the DA approaches in a specific domain (e.g., images or natural language processing) or only review a part of MixDA studies, we are the first to provide a systematical survey of MixDA in terms of its taxonomy, methodology, applications, and explainability. This work can serve as a roadmap to MixDA techniques and application reviews while providing promising directions for researchers interested in this exciting area.

Abstract (translated)

URL

https://arxiv.org/abs/2212.10888

PDF

https://arxiv.org/pdf/2212.10888.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot