Paper Reading AI Learner

Adversarial Machine Learning and Defense Game for NextG Signal Classification with Deep Learning

2022-12-22 15:13:03
Yalin E. Sagduyu

Abstract

This paper presents a game-theoretic framework to study the interactions of attack and defense for deep learning-based NextG signal classification. NextG systems such as the one envisioned for a massive number of IoT devices can employ deep neural networks (DNNs) for various tasks such as user equipment identification, physical layer authentication, and detection of incumbent users (such as in the Citizens Broadband Radio Service (CBRS) band). By training another DNN as the surrogate model, an adversary can launch an inference (exploratory) attack to learn the behavior of the victim model, predict successful operation modes (e.g., channel access), and jam them. A defense mechanism can increase the adversary's uncertainty by introducing controlled errors in the victim model's decisions (i.e., poisoning the adversary's training data). This defense is effective against an attack but reduces the performance when there is no attack. The interactions between the defender and the adversary are formulated as a non-cooperative game, where the defender selects the probability of defending or the defense level itself (i.e., the ratio of falsified decisions) and the adversary selects the probability of attacking. The defender's objective is to maximize its reward (e.g., throughput or transmission success ratio), whereas the adversary's objective is to minimize this reward and its attack cost. The Nash equilibrium strategies are determined as operation modes such that no player can unilaterally improve its utility given the other's strategy is fixed. A fictitious play is formulated for each player to play the game repeatedly in response to the empirical frequency of the opponent's actions. The performance in Nash equilibrium is compared to the fixed attack and defense cases, and the resilience of NextG signal classification against attacks is quantified.

Abstract (translated)

URL

https://arxiv.org/abs/2212.11778

PDF

https://arxiv.org/pdf/2212.11778.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot