Paper Reading AI Learner

MILDNet: A Lightweight Single Scaled Deep Ranking Architecture

2019-03-03 13:26:37
Anirudha Vishvakarma

Abstract

Multi-scale deep CNN architecture [1, 2, 3] successfully captures both fine and coarse level image descriptors for visual similarity task, but they come up with expensive memory overhead and latency. In this paper, we propose a competing novel CNN architecture, called MILDNet, which merits by being vastly compact (about 3 times). Inspired by the fact that successive CNN layers represent the image with increasing levels of abstraction, we compressed our deep ranking model to a single CNN by coupling activations from multiple intermediate layers along with the last layer. Trained on the famous Street2shop dataset [4], we demonstrate that our approach performs as good as the current state-of-the-art models with only one third of the parameters, model size, training time and significant reduction in inference time. The significance of intermediate layers on image retrieval task has also been shown to be performing on popular datasets Holidays, Oxford, Paris [5]. So even though our experiments are done on ecommerce domain, it is applicable to other domains as well. We further did an ablation study to validate our hypothesis by checking the impact on adding each intermediate layer. With this we also present two more useful variants of MILDNet, a mobile model (12 times smaller) for on-edge devices and a compactly featured model (512-d feature embeddings) for systems with less RAMs and to reduce the ranking cost. Further we present an intuitive way to automatically create a tailored in-house triplet training dataset, which is very hard to create manually. This solution too can also be deployed as an all-inclusive visual similarity solution. Finally, we present our entire production level architecture which currently powers visual similarity at Fynd.

Abstract (translated)

URL

https://arxiv.org/abs/1903.00905

PDF

https://arxiv.org/pdf/1903.00905.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot