Paper Reading AI Learner

A Meta-Learning Algorithm for Interrogative Agendas

2023-01-04 22:09:36
Erman Acar, Andrea De Domenico, Krishna Manoorkar, Mattia Panettiere

Abstract

Explainability is a key challenge and a major research theme in AI research for developing intelligent systems that are capable of working with humans more effectively. An obvious choice in developing explainable intelligent systems relies on employing knowledge representation formalisms which are inherently tailored towards expressing human knowledge e.g., interrogative agendas. In the scope of this work, we focus on formal concept analysis (FCA), a standard knowledge representation formalism, to express interrogative agendas, and in particular to categorize objects w.r.t. a given set of features. Several FCA-based algorithms have already been in use for standard machine learning tasks such as classification and outlier detection. These algorithms use a single concept lattice for such a task, meaning that the set of features used for the categorization is fixed. Different sets of features may have different importance in that categorization, we call a set of features an agenda. In many applications a correct or good agenda for categorization is not known beforehand. In this paper, we propose a meta-learning algorithm to construct a good interrogative agenda explaining the data. Such algorithm is meant to call existing FCA-based classification and outlier detection algorithms iteratively, to increase their accuracy and reduce their sample complexity. The proposed method assigns a measure of importance to different set of features used in the categorization, hence making the results more explainable.

Abstract (translated)

URL

https://arxiv.org/abs/2301.01837

PDF

https://arxiv.org/pdf/2301.01837.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot