Paper Reading AI Learner

A survey on Organoid Image Analysis Platforms

2023-01-06 00:15:05
Alireza Ranjbaran, Azadeh Nazemi

Abstract

An in-vitro cell culture system is used for biological discoveries and hypothesis-driven research on a particular cell type to understand mechanistic or test pharmaceutical drugs. Conventional in-vitro cultures have been applied to primary cells and immortalised cell lines plated on 2D surfaces. However, they are unreliable in complex physiological environments and can not always predict in-vivo behaviour correctly. Organoids are multicellular spheroids of a primary donor or stem cells that are replaced in vitro cell culture systems and are widely used in biological, biomedical and translational studies. Native heterogeneity, microanatomy, and functionality of an organ or diseased tissue can be represented by three-dimensional in-vitro tissue models such as organoids. Organoids are essential in in-vitro models for drug discovery and personalised drug screening. Many imaging artefacts such as organoid occlusion, overlap, out-of-focus spheroids and considerable heterogeneity in size cause difficulty in conventional image processing. Despite the power of organoid models for biology, their size and shape have mostly not been considered. Drug responses depend on dynamic changes in individual organoid morphology, number and size, which means differences in organoid shape and size, movement through focal planes, and live-cell staining with limited options cause challenges for drug response and growth analysis. This study primarily introduces the importance of the role of the organoid culture system in different disciplines of medical science and various scopes of utilising organoids. Then studies the challenges of operating organoids, followed by reviewing image analysis systems or platforms applied to organoids to address organoid utilising challenges.

Abstract (translated)

URL

https://arxiv.org/abs/2301.02341

PDF

https://arxiv.org/pdf/2301.02341.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot