Paper Reading AI Learner

DeMT: Deformable Mixer Transformer for Multi-Task Learning of Dense Prediction

2023-01-09 16:00:15
Yangyang Xu ang Yibo Yang, Lefei Zhang

Abstract

Convolution neural networks (CNNs) and Transformers have their own advantages and both have been widely used for dense prediction in multi-task learning (MTL). Most of the current studies on MTL solely rely on CNN or Transformer. In this work, we present a novel MTL model by combining both merits of deformable CNN and query-based Transformer for multi-task learning of dense prediction. Our method, named DeMT, is based on a simple and effective encoder-decoder architecture (i.e., deformable mixer encoder and task-aware transformer decoder). First, the deformable mixer encoder contains two types of operators: the channel-aware mixing operator leveraged to allow communication among different channels ($i.e.,$ efficient channel location mixing), and the spatial-aware deformable operator with deformable convolution applied to efficiently sample more informative spatial locations (i.e., deformed features). Second, the task-aware transformer decoder consists of the task interaction block and task query block. The former is applied to capture task interaction features via self-attention. The latter leverages the deformed features and task-interacted features to generate the corresponding task-specific feature through a query-based Transformer for corresponding task predictions. Extensive experiments on two dense image prediction datasets, NYUD-v2 and PASCAL-Context, demonstrate that our model uses fewer GFLOPs and significantly outperforms current Transformer- and CNN-based competitive models on a variety of metrics. The code are available at this https URL .

Abstract (translated)

URL

https://arxiv.org/abs/2301.03461

PDF

https://arxiv.org/pdf/2301.03461.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot