Paper Reading AI Learner

tieval: An Evaluation Framework for Temporal Information Extraction Systems

2023-01-11 18:55:22
Hugo Sousa, Alípio Jorge, Ricardo Campos

Abstract

Temporal information extraction (TIE) has attracted a great deal of interest over the last two decades, leading to the development of a significant number of datasets. Despite its benefits, having access to a large volume of corpora makes it difficult when it comes to benchmark TIE systems. On the one hand, different datasets have different annotation schemes, thus hindering the comparison between competitors across different corpora. On the other hand, the fact that each corpus is commonly disseminated in a different format requires a considerable engineering effort for a researcher/practitioner to develop parsers for all of them. This constraint forces researchers to select a limited amount of datasets to evaluate their systems which consequently limits the comparability of the systems. Yet another obstacle that hinders the comparability of the TIE systems is the evaluation metric employed. While most research works adopt traditional metrics such as precision, recall, and $F_1$, a few others prefer temporal awareness -- a metric tailored to be more comprehensive on the evaluation of temporal systems. Although the reason for the absence of temporal awareness in the evaluation of most systems is not clear, one of the factors that certainly weights this decision is the necessity to implement the temporal closure algorithm in order to compute temporal awareness, which is not straightforward to implement neither is currently easily available. All in all, these problems have limited the fair comparison between approaches and consequently, the development of temporal extraction systems. To mitigate these problems, we have developed tieval, a Python library that provides a concise interface for importing different corpora and facilitates system evaluation. In this paper, we present the first public release of tieval and highlight its most relevant features.

Abstract (translated)

URL

https://arxiv.org/abs/2301.04643

PDF

https://arxiv.org/pdf/2301.04643.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot