Paper Reading AI Learner

Jamming Attacks on Decentralized Federated Learning in General Multi-Hop Wireless Networks

2023-01-12 19:03:05
Yi Shi, Yalin E. Sagduyu, Tugba Erpek

Abstract

Decentralized federated learning (DFL) is an effective approach to train a deep learning model at multiple nodes over a multi-hop network, without the need of a server having direct connections to all nodes. In general, as long as nodes are connected potentially via multiple hops, the DFL process will eventually allow each node to experience the effects of models from all other nodes via either direct connections or multi-hop paths, and thus is able to train a high-fidelity model at each node. We consider an effective attack that uses jammers to prevent the model exchanges between nodes. There are two attack scenarios. First, the adversary can attack any link under a certain budget. Once attacked, two end nodes of a link cannot exchange their models. Secondly, some jammers with limited jamming ranges are deployed in the network and a jammer can only jam nodes within its jamming range. Once a directional link is attacked, the receiver node cannot receive the model from the transmitter node. We design algorithms to select links to be attacked for both scenarios. For the second scenario, we also design algorithms to deploy jammers at optimal locations so that they can attack critical nodes and achieve the highest impact on the DFL process. We evaluate these algorithms by using wireless signal classification over a large network area as the use case and identify how these attack mechanisms exploits various learning, connectivity, and sensing aspects. We show that the DFL performance can be significantly reduced by jamming attacks launched in a wireless network and characterize the attack surface as a vulnerability study before the safe deployment of DFL over wireless networks.

Abstract (translated)

URL

https://arxiv.org/abs/2301.05250

PDF

https://arxiv.org/pdf/2301.05250.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot