Paper Reading AI Learner

Reworking geometric morphometrics into a methodology of transformation grids

2023-01-13 15:47:02
Fred L. Bookstein

Abstract

Today's typical application of geometric morphometrics to a quantitative comparison of organismal anatomies begins by standardizing samples of homologously labelled point configurations for location, orientation, and scale, and then renders the ensuing comparisons graphically by thin-plate spline as applied to group averages, principal components, regression predictions, or canonical variates. The scale-standardization step has recently come under criticism as inappropriate, at least for growth studies. This essay argues for a similar rethinking of the centering and rotation, and then the replacement of the thin-plate spline interpolant of the resulting configurations by a different strategy that leaves unexplained residuals at every landmark individually in order to simplify the interpretation of the displayed grid as a whole, the "transformation grid" that has been highlighted as the true underlying topic ever since D'Arcy Thompson's exposition of 1917. For analyses of comparisons involving gradients at large geometric scale, this paper argues for replacement of all the Procrustes conventions by a version of my two-point registration of 1986 (originally Francis Galton's of 1907). The choice of the two points interacts with another non-Procrustes concern, interpretability of the grid lines of a coordinate system deformed according to a fitted polynomial trend rather than an interpolating thin-plate spline. The paper works two examples using previously published cranial data; there result new findings pertinent to the interpretation of both of these classic data sets. A concluding discussion suggests that the current toolkit of geometric morphometrics, centered on Procrustes shape coordinates and thin-plate splines, is too restricted to suit many of the interpretive purposes of evolutionary and developmental biology.

Abstract (translated)

URL

https://arxiv.org/abs/2301.05623

PDF

https://arxiv.org/pdf/2301.05623.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot