Paper Reading AI Learner

Adaptive Depth Graph Attention Networks

2023-01-16 05:22:29
Jingbo Zhou, Yixuan Du, Ruqiong Zhang, Rui Zhang

Abstract

As one of the most popular GNN architectures, the graph attention networks (GAT) is considered the most advanced learning architecture for graph representation and has been widely used in various graph mining tasks with impressive results. However, since GAT was proposed, none of the existing studies have provided systematic insight into the relationship between the performance of GAT and the number of layers, which is a critical issue in guiding model performance improvement. In this paper, we perform a systematic experimental evaluation and based on the experimental results, we find two important facts: (1) the main factor limiting the accuracy of the GAT model as the number of layers increases is the oversquashing phenomenon; (2) among the previous improvements applied to the GNN model, only the residual connection can significantly improve the GAT model performance. We combine these two important findings to provide a theoretical explanation that it is the residual connection that mitigates the loss of original feature information due to oversquashing and thus improves the deep GAT model performance. This provides empirical insights and guidelines for researchers to design the GAT variant model with appropriate depth and well performance. To demonstrate the effectiveness of our proposed guidelines, we propose a GAT variant model-ADGAT that adaptively selects the number of layers based on the sparsity of the graph, and experimentally demonstrate that the effectiveness of our model is significantly improved over the original GAT.

Abstract (translated)

URL

https://arxiv.org/abs/2301.06265

PDF

https://arxiv.org/pdf/2301.06265.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot