Paper Reading AI Learner

Sharp Eyes: A Salient Object Detector Working The Same Way as Human Visual Characteristics

2023-01-18 11:00:45
Ge Zhu, Jinbao Li, Yahong Guo

Abstract

Current methods aggregate multi-level features or introduce edge and skeleton to get more refined saliency maps. However, little attention is paid to how to obtain the complete salient object in cluttered background, where the targets are usually similar in color and texture to the background. To handle this complex scene, we propose a sharp eyes network (SENet) that first seperates the object from scene, and then finely segments it, which is in line with human visual characteristics, i.e., to look first and then focus. Different from previous methods which directly integrate edge or skeleton to supplement the defects of objects, the proposed method aims to utilize the expanded objects to guide the network obtain complete prediction. Specifically, SENet mainly consists of target separation (TS) brach and object segmentation (OS) branch trained by minimizing a new hierarchical difference aware (HDA) loss. In the TS branch, we construct a fractal structure to produce saliency features with expanded boundary via the supervision of expanded ground truth, which can enlarge the detail difference between foreground and background. In the OS branch, we first aggregate multi-level features to adaptively select complementary components, and then feed the saliency features with expanded boundary into aggregated features to guide the network obtain complete prediction. Moreover, we propose the HDA loss to further improve the structural integrity and local details of the salient objects, which assigns weight to each pixel according to its distance from the boundary hierarchically. Hard pixels with similar appearance in border region will be given more attention hierarchically to emphasize their importance in completeness prediction. Comprehensive experimental results on five datasets demonstrate that the proposed approach outperforms the state-of-the-art methods both quantitatively and qualitatively.

Abstract (translated)

URL

https://arxiv.org/abs/2301.07431

PDF

https://arxiv.org/pdf/2301.07431.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot