Paper Reading AI Learner

Creating awareness about security and safety on highways to mitigate wildlife-vehicle collisions by detecting and recognizing wildlife fences using deep learning and drone technology

2022-12-22 13:00:48
Irene Nandutu, Marcellin Atemkeng, Patrice Okouma, Nokubonga Mgqatsa, Jean Louis Ebongue Kedieng Fendji, Franklin Tchakounte

Abstract

In South Africa, it is a common practice for people to leave their vehicles beside the road when traveling long distances for a short comfort break. This practice might increase human encounters with wildlife, threatening their security and safety. Here we intend to create awareness about wildlife fencing, using drone technology and computer vision algorithms to recognize and detect wildlife fences and associated features. We collected data at Amakhala and Lalibela private game reserves in the Eastern Cape, South Africa. We used wildlife electric fence data containing single and double fences for the classification task. Additionally, we used aerial and still annotated images extracted from the drone and still cameras for the segmentation and detection tasks. The model training results from the drone camera outperformed those from the still camera. Generally, poor model performance is attributed to (1) over-decompression of images and (2) the ability of drone cameras to capture more details on images for the machine learning model to learn as compared to still cameras that capture only the front view of the wildlife fence. We argue that our model can be deployed on client-edge devices to inform people about the presence and significance of wildlife fencing, which minimizes human encounters with wildlife, thereby mitigating wildlife-vehicle collisions.

Abstract (translated)

URL

https://arxiv.org/abs/2301.07174

PDF

https://arxiv.org/pdf/2301.07174.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot