Paper Reading AI Learner

Curriculum Script Distillation for Multilingual Visual Question Answering

2023-01-17 23:55:50
Khyathi Raghavi Chandu, Alborz Geramifard
     

Abstract

Pre-trained models with dual and cross encoders have shown remarkable success in propelling the landscape of several tasks in vision and language in Visual Question Answering (VQA). However, since they are limited by the requirements of gold annotated data, most of these advancements do not see the light of day in other languages beyond English. We aim to address this problem by introducing a curriculum based on the source and target language translations to finetune the pre-trained models for the downstream task. Experimental results demonstrate that script plays a vital role in the performance of these models. Specifically, we show that target languages that share the same script perform better (~6%) than other languages and mixed-script code-switched languages perform better than their counterparts (~5-12%).

Abstract (translated)

URL

https://arxiv.org/abs/2301.07227

PDF

https://arxiv.org/pdf/2301.07227.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot