Paper Reading AI Learner

Few-shot Font Generation by Learning Style Difference and Similarity

2023-01-24 13:57:25
Xiao He, Mingrui Zhu, Nannan Wang, Xinbo Gao, Heng Yang

Abstract

Few-shot font generation (FFG) aims to preserve the underlying global structure of the original character while generating target fonts by referring to a few samples. It has been applied to font library creation, a personalized signature, and other scenarios. Existing FFG methods explicitly disentangle content and style of reference glyphs universally or component-wisely. However, they ignore the difference between glyphs in different styles and the similarity of glyphs in the same style, which results in artifacts such as local distortions and style inconsistency. To address this issue, we propose a novel font generation approach by learning the Difference between different styles and the Similarity of the same style (DS-Font). We introduce contrastive learning to consider the positive and negative relationship between styles. Specifically, we propose a multi-layer style projector for style encoding and realize a distinctive style representation via our proposed Cluster-level Contrastive Style (CCS) loss. In addition, we design a multi-task patch discriminator, which comprehensively considers different areas of the image and ensures that each style can be distinguished independently. We conduct qualitative and quantitative evaluations comprehensively to demonstrate that our approach achieves significantly better results than state-of-the-art methods.

Abstract (translated)

有限次数字体生成(FFG)旨在通过引用少量样本生成目标字体,同时保留原始字符的全局结构。它已被应用于字体库创建、个性化签名和其他场景。现有的FFG方法明确分离参考字体的内容和风格,普遍或按组件分解。然而,它们忽略了不同风格之间的差异和相同风格的相似性,导致失真局部和风格不一致等 artifacts。为了解决这个问题,我们提出了一种新字体生成方法,通过学习不同风格之间的差异和相同风格的相似性(DS-Font)。我们引入了比较学习,考虑风格之间的积极和消极关系。具体来说,我们提出了一种多层风格投影,用于风格编码,并通过我们提出的 Cluster-level Contrastive Style (CCS) 损失实现独特的风格表示。此外,我们设计了一个多任务 patch discriminator,全面考虑图像的不同区域,确保每种风格可以独立区分。我们进行全面定性和定量评估,证明我们的方法比现有方法实现更好的结果。

URL

https://arxiv.org/abs/2301.10008

PDF

https://arxiv.org/pdf/2301.10008.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot