Paper Reading AI Learner

3DShape2VecSet: A 3D Shape Representation for Neural Fields and Generative Diffusion Models

2023-01-26 22:23:03
Biao Zhang, Jiapeng Tang, Matthias Niessner, Peter Wonka

Abstract

We introduce 3DShape2VecSet, a novel shape representation for neural fields designed for generative diffusion models. Our shape representation can encode 3D shapes given as surface models or point clouds, and represents them as neural fields. The concept of neural fields has previously been combined with a global latent vector, a regular grid of latent vectors, or an irregular grid of latent vectors. Our new representation encodes neural fields on top of a set of vectors. We draw from multiple concepts, such as the radial basis function representation and the cross attention and self-attention function, to design a learnable representation that is especially suitable for processing with transformers. Our results show improved performance in 3D shape encoding and 3D shape generative modeling tasks. We demonstrate a wide variety of generative applications: unconditioned generation, category-conditioned generation, text-conditioned generation, point-cloud completion, and image-conditioned generation.

Abstract (translated)

我们介绍了3DShape2VecSet,这是一种为生成扩散模型设计的神经网络 fields 的新型形状表示。该形状表示可以编码以表面模型或点云为代表的3D形状,并将它们表示为神经网络 fields。神经网络 fields 的概念以前曾与一个全局隐向量、一个 regular grid 或一个不规则 grid 一起结合,我们的新表示在一组向量上编码了神经网络 fields。我们借鉴了多个概念,如径向基函数表示和交叉和自注意力函数,设计了一种适合与Transformers 进行处理的学习表示。我们的结果表明,在3D形状编码和3D形状生成建模任务中表现提高了。我们展示了多种生成应用:无条件生成、类别条件生成、文本条件生成、点云完成和图像条件生成。

URL

https://arxiv.org/abs/2301.11445

PDF

https://arxiv.org/pdf/2301.11445


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot