Paper Reading AI Learner

Enhancing Dialogue Summarization with Topic-Aware Global- and Local- Level Centrality

2023-01-29 06:41:55
Xinnian Liang, Shuangzhi Wu, Chenhao Cui, Jiaqi Bai, Chao Bian, Zhoujun Li

Abstract

Dialogue summarization aims to condense a given dialogue into a simple and focused summary text. Typically, both the roles' viewpoints and conversational topics change in the dialogue stream. Thus how to effectively handle the shifting topics and select the most salient utterance becomes one of the major challenges of this task. In this paper, we propose a novel topic-aware Global-Local Centrality (GLC) model to help select the salient context from all sub-topics. The centralities are constructed at both the global and local levels. The global one aims to identify vital sub-topics in the dialogue and the local one aims to select the most important context in each sub-topic. Specifically, the GLC collects sub-topic based on the utterance representations. And each utterance is aligned with one sub-topic. Based on the sub-topics, the GLC calculates global- and local-level centralities. Finally, we combine the two to guide the model to capture both salient context and sub-topics when generating summaries. Experimental results show that our model outperforms strong baselines on three public dialogue summarization datasets: CSDS, MC, and SAMSUM. Further analysis demonstrates that our GLC can exactly identify vital contents from sub-topics.~\footnote{\url{this https URL}}

Abstract (translated)

对话摘要旨在将给定的对话压缩成简单且重点突出的摘要文本。通常情况下,对话角色的观点和对话话题在对话流中会发生变化。因此,如何有效地处理变化的话题和选择最引人注目的言简意赅的说话内容成为这个任务的主要挑战之一。在本文中,我们提出了一种新的话题Aware Global-Local Centrality (GLC)模型,以帮助选择所有子话题中的引人注目上下文。上下文是在 global 和 local 层面上构建的。global 上下文旨在识别对话中的 vital 子话题,而 local 上下文旨在选择每个子话题中最重要的上下文。具体来说,GLC 通过说话内容表示收集子话题。每个说话内容都与一个子话题对齐。基于子话题,GLC 计算 global 和 local 层面的中心性。最后,我们结合了两个模型,以指导模型在生成摘要时捕获引人注目的上下文和子话题。实验结果显示,我们在三个公共对话摘要数据集上:CSDS、MC 和 SAMSUM中的表现优于强基准模型。进一步分析表明,我们的 GLMC 可以准确地从子话题中识别关键内容。

URL

https://arxiv.org/abs/2301.12376

PDF

https://arxiv.org/pdf/2301.12376.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot