Paper Reading AI Learner

Temporal Coherent Test-Time Optimization for Robust Video Classification

2023-02-28 04:59:23
Chenyu Yi, Siyuan Yang, Yufei Wang, Haoliang Li, Yap-Peng Tan, Alex C. Kot


Deep neural networks are likely to fail when the test data is corrupted in real-world deployment (e.g., blur, weather, etc.). Test-time optimization is an effective way that adapts models to generalize to corrupted data during testing, which has been shown in the image domain. However, the techniques for improving video classification corruption robustness remain few. In this work, we propose a Temporal Coherent Test-time Optimization framework (TeCo) to utilize spatio-temporal information in test-time optimization for robust video classification. To exploit information in video with self-supervised learning, TeCo uses global content from video clips and optimizes models for entropy minimization. TeCo minimizes the entropy of the prediction based on the global content from video clips. Meanwhile, it also feeds local content to regularize the temporal coherence at the feature level. TeCo retains the generalization ability of various video classification models and achieves significant improvements in corruption robustness across Mini Kinetics-C and Mini SSV2-C. Furthermore, TeCo sets a new baseline in video classification corruption robustness via test-time optimization.

Abstract (translated)

深度学习网络在真实世界部署中测试数据有损坏时可能会失败(例如,模糊、天气等)。测试时优化是一种有效的方法,可以适应模型在测试期间对损坏数据进行泛化的方法,这在图像领域已经得到了证明。然而,改善视频分类的损坏鲁棒性的方法仍然很少。在本文中,我们提出了一个时间一致性测试时优化框架(TeCo),利用时间信息在测试时优化视频分类的鲁棒性。为了利用自监督学习视频中的信息,TeCo使用视频片段中的全局内容并优化模型的熵最小化。TeCo基于视频片段中的全局内容最小化预测熵。同时,它还在特征级别上 feed 当地内容,以 regularize 时间一致性。TeCo保留了各种视频分类模型的泛化能力,并在 Mini Kinetics-C 和 Mini SSV2-C 之间实现了显著的损坏鲁棒性改善。此外,通过测试时优化,TeCo 在视频分类的损坏鲁棒性方面也提供了一个新的基础。



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot