Paper Reading AI Learner

Purifying Naturalistic Images through a Real-time Style Transfer Semantics Network

2019-03-14 05:33:08
Tongtong Zhao, Yuxiao Yan, Ibrahim Shehi Shehu, Xianping Fu, Huibing Wang

Abstract

Recently, the progress of learning-by-synthesis has proposed a training model for synthetic images, which can effectively reduce the cost of human and material resources. However, due to the different distribution of synthetic images compared to real images, the desired performance cannot still be achieved. Real images consist of multiple forms of light orientation, while synthetic images consist of a uniform light orientation. These features are considered to be characteristic of outdoor and indoor scenes, respectively. To solve this problem, the previous method learned a model to improve the realism of the synthetic image. Different from the previous methods, this paper takes the first step to purify real images. Through the style transfer task, the distribution of outdoor real images is converted into indoor synthetic images, thereby reducing the influence of light. Therefore, this paper proposes a real-time style transfer network that preserves image content information (eg, gaze direction, pupil center position) of an input image (real image) while inferring style information (eg, image color structure, semantic features) of style image (synthetic image). In addition, the network accelerates the convergence speed of the model and adapts to multi-scale images. Experiments were performed using mixed studies (qualitative and quantitative) methods to demonstrate the possibility of purifying real images in complex directions. Qualitatively, it compares the proposed method with the available methods in a series of indoor and outdoor scenarios of the LPW dataset. In quantitative terms, it evaluates the purified image by training a gaze estimation model on the cross data set. The results show a significant improvement over the baseline method compared to the raw real image.

Abstract (translated)

URL

https://arxiv.org/abs/1903.05820

PDF

https://arxiv.org/pdf/1903.05820


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot