Paper Reading AI Learner

SemARFlow: Injecting Semantics into Unsupervised Optical Flow Estimation for Autonomous Driving

2023-03-10 21:17:14
Shuai Yuan, Shuzhi Yu, Hannah Kim, Carlo Tomasi

Abstract

Unsupervised optical flow estimation is especially hard near occlusions and motion boundaries and in low-texture regions. We show that additional information such as semantics and domain knowledge can help better constrain this problem. We introduce SemARFlow, an unsupervised optical flow network designed for autonomous driving data that takes estimated semantic segmentation masks as additional inputs. This additional information is injected into the encoder and into a learned upsampler that refines the flow output. In addition, a simple yet effective semantic augmentation module provides self-supervision when learning flow and its boundaries for vehicles, poles, and sky. Together, these injections of semantic information improve the KITTI-2015 optical flow test error rate from 11.80% to 8.38%. We also show visible improvements around object boundaries as well as a greater ability to generalize across datasets. Code will be made available.

Abstract (translated)

无监督光学流估计在遮挡和运动边界以及低纹理区域特别困难。我们证明了额外的信息,如语义和领域知识,可以帮助更好地限制这个问题。我们介绍了SemARFlow,这是一个为自主驾驶数据设计的无监督光学流网络,使用估计的语义分割掩膜作为额外的输入。这些额外的信息被注入到编码器和一个通过学习的扩展器,以优化流输出。此外,一个简单的但有效的语义增强模块在学习流和其边界对车辆、丘陵和天空时提供自我监督。通过这些注入的语义信息,KITTI-2015光学流测试错误率从11.80%降低到8.38%。我们还展示了围绕物体边界的可见改善以及更广泛地应用于数据集的能力。代码将公开提供。

URL

https://arxiv.org/abs/2303.06209

PDF

https://arxiv.org/pdf/2303.06209


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot