Paper Reading AI Learner

Boosting Weakly Supervised Object Detection using Fusion and Priors from Hallucinated Depth

2023-03-20 08:26:29
Cagri Gungor, Adriana Kovashka

Abstract

Despite recent attention and exploration of depth for various tasks, it is still an unexplored modality for weakly-supervised object detection (WSOD). We propose an amplifier method for enhancing the performance of WSOD by integrating depth information. Our approach can be applied to any WSOD method based on multiple-instance learning, without necessitating additional annotations or inducing large computational expenses. Our proposed method employs a monocular depth estimation technique to obtain hallucinated depth information, which is then incorporated into a Siamese WSOD network using contrastive loss and fusion. By analyzing the relationship between language context and depth, we calculate depth priors to identify the bounding box proposals that may contain an object of interest. These depth priors are then utilized to update the list of pseudo ground-truth boxes, or adjust the confidence of per-box predictions. Our proposed method is evaluated on six datasets (COCO, PASCAL VOC, Conceptual Captions, Clipart1k, Watercolor2k, and Comic2k) by implementing it on top of two state-of-the-art WSOD methods, and we demonstrate a substantial enhancement in performance.

Abstract (translated)

尽管最近对深度在各种任务上的关注和研究增多,但对于弱监督对象检测(WSOD)的方法,仍然未进行充分的探索。我们提出了一种集成深度信息来提高WSOD性能的方法。这种方法可以适用于基于多实例学习的任何WSOD方法,而不需要额外的标注或高昂的计算成本。我们的方法使用单眼深度估计技术来获取幻觉深度信息,然后将其集成到使用对比损失和融合的Siamese WSOD网络中。通过分析语言上下文和深度之间的关系,我们计算深度先验,以确定可能包含感兴趣对象的 bounding box提议。这些深度先验则用于更新伪真实标签盒子列表,或调整每个盒子的预测 confidence。我们的方法在六个数据集(COCO、PASCAL VOC、概念标题、Clipart1k、Watercolor2k和漫画2k)上进行评估,将其置于两个最先进的WSOD方法之上,并证明了性能的重大增强。

URL

https://arxiv.org/abs/2303.10937

PDF

https://arxiv.org/pdf/2303.10937.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot