Paper Reading AI Learner

Markerless Motion Capture and Biomechanical Analysis Pipeline

2023-03-19 13:31:57
R. James Cotton, Allison DeLillo, Anthony Cimorelli, Kunal Shah, J.D. Peiffer, Shawana Anarwala, Kayan Abdou, Tasos Karakostas

Abstract

Markerless motion capture using computer vision and human pose estimation (HPE) has the potential to expand access to precise movement analysis. This could greatly benefit rehabilitation by enabling more accurate tracking of outcomes and providing more sensitive tools for research. There are numerous steps between obtaining videos to extracting accurate biomechanical results and limited research to guide many critical design decisions in these pipelines. In this work, we analyze several of these steps including the algorithm used to detect keypoints and the keypoint set, the approach to reconstructing trajectories for biomechanical inverse kinematics and optimizing the IK process. Several features we find important are: 1) using a recent algorithm trained on many datasets that produces a dense set of biomechanically-motivated keypoints, 2) using an implicit representation to reconstruct smooth, anatomically constrained marker trajectories for IK, 3) iteratively optimizing the biomechanical model to match the dense markers, 4) appropriate regularization of the IK process. Our pipeline makes it easy to obtain accurate biomechanical estimates of movement in a rehabilitation hospital.

Abstract (translated)

使用计算机视觉和人类姿态估计(HPE)进行无标记运动捕捉的潜在能力扩展了精确运动分析的访问。这将有助于康复,通过允许更准确地跟踪结果并提供更敏感的研究工具。在这项工作中,我们分析了几个步骤,包括用于检测关键点和关键点集的算法、用于重建生物医学逆运动学轨迹的方法,以及优化IK过程的方法。我们发现几个重要特征是:1)使用训练了许多数据集的最新算法,以生成一组生物医学动机的关键点的深度表示法;2)使用一种隐含表示来重建IK轨迹的平滑、具有身体解剖学约束的关键点标记法;3)迭代优化生物医学模型,使其与密集标记相匹配;4)适当规范IK过程。我们的管道使在康复医院获得准确的生物医学运动估计变得容易。

URL

https://arxiv.org/abs/2303.10654

PDF

https://arxiv.org/pdf/2303.10654.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot