Paper Reading AI Learner

Novel Class Discovery for 3D Point Cloud Semantic Segmentation

2023-03-21 06:10:39
Luigi Riz, Cristiano Saltori, Elisa Ricci, Fabio Poiesi

Abstract

Novel class discovery (NCD) for semantic segmentation is the task of learning a model that can segment unlabelled (novel) classes using only the supervision from labelled (base) classes. This problem has recently been pioneered for 2D image data, but no work exists for 3D point cloud data. In fact, the assumptions made for 2D are loosely applicable to 3D in this case. This paper is presented to advance the state of the art on point cloud data analysis in four directions. Firstly, we address the new problem of NCD for point cloud semantic segmentation. Secondly, we show that the transposition of the only existing NCD method for 2D semantic segmentation to 3D data is suboptimal. Thirdly, we present a new method for NCD based on online clustering that exploits uncertainty quantification to produce prototypes for pseudo-labelling the points of the novel classes. Lastly, we introduce a new evaluation protocol to assess the performance of NCD for point cloud semantic segmentation. We thoroughly evaluate our method on SemanticKITTI and SemanticPOSS datasets, showing that it can significantly outperform the baseline. Project page at this link: this https URL.

Abstract (translated)

新的类发现(NCD)语义分割任务的任务是学习一种模型,可以利用标记(基础)类的监督来分割未标记(新)类。这个问题最近在2D图像数据上率先提出,但对于3D点云数据却没有研究。事实上,对于2D的假设在此处并不适用于3D。本文旨在推进点云数据分析的前沿技术,从四个方面推进。首先,我们解决点云语义分割中的NCD新问题。其次,我们表明将仅使用2D语义分割方法中的唯一可用NCD方法应用于3D数据是性能较差的。第三,我们提出了基于在线聚类的NCD新方法,利用不确定性量化生产原型,用于伪标记新类点的原型。最后,我们引入了一种新的评估协议,以评估点云语义分割中的NCD性能。我们对SemanticKITTI和SemanticPOSS数据集进行了充分的评估,表明它可以显著优于基准。该项目页面在此链接:此https URL。

URL

https://arxiv.org/abs/2303.11610

PDF

https://arxiv.org/pdf/2303.11610.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot