Paper Reading AI Learner

SC-MIL: Supervised Contrastive Multiple Instance Learning for Imbalanced Classification in Pathology

2023-03-23 16:28:15
Dinkar Juyal, Siddhant Shingi, Syed Ashar Javed, Harshith Padigela, Chintan Shah, Anand Sampat, Archit Khosla, John Abel, Amaro Taylor-Weiner

Abstract

Multiple Instance learning (MIL) models have been extensively used in pathology to predict biomarkers and risk-stratify patients from gigapixel-sized images. Machine learning problems in medical imaging often deal with rare diseases, making it important for these models to work in a label-imbalanced setting. Furthermore, these imbalances can occur in out-of-distribution (OOD) datasets when the models are deployed in the real-world. We leverage the idea that decoupling feature and classifier learning can lead to improved decision boundaries for label imbalanced datasets. To this end, we investigate the integration of supervised contrastive learning with multiple instance learning (SC-MIL). Specifically, we propose a joint-training MIL framework in the presence of label imbalance that progressively transitions from learning bag-level representations to optimal classifier learning. We perform experiments with different imbalance settings for two well-studied problems in cancer pathology: subtyping of non-small cell lung cancer and subtyping of renal cell carcinoma. SC-MIL provides large and consistent improvements over other techniques on both in-distribution (ID) and OOD held-out sets across multiple imbalanced settings.

Abstract (translated)

多实例学习(MIL)模型在病理学中被广泛使用,从Gigapixel大小的图像中预测生物标记和风险分类患者。医学影像学中的机器学习问题通常涉及罕见的疾病,因此这些模型必须在标签不平衡的环境下工作。此外,当模型在现实世界部署时,标签不平衡可能会发生在非均匀分布的数据集上。我们利用的是 feature 和分类器学习解耦的概念,这可以导致标签不平衡的数据集决策边界改善。为此,我们研究了监督对比学习与多实例学习(SC-MIL)的集成。具体而言,我们提出了在标签不平衡的情况下进行联合训练的 MIL 框架,并逐步从学习袋级表示转移到最佳分类器学习。我们对两个在癌症病理学中被广泛研究的问题的不同类型进行了实验:非小细胞肺癌和肺癌的不同类型。SC-MIL 在均匀分布(ID)和 OOD 保留组中提供了比其他技术大且一致的改善。

URL

https://arxiv.org/abs/2303.13405

PDF

https://arxiv.org/pdf/2303.13405.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot