Paper Reading AI Learner

BAE-NET: Branched Autoencoder for Shape Co-Segmentation

2019-03-27 02:33:20
Zhiqin Chen, Kangxue Yin, Matthew Fisher, Siddhartha Chaudhuri, Hao Zhang

Abstract

We treat shape co-segmentation as a representation learning problem and introduce BAE-NET, a branched autoencoder network, for the task. The unsupervised BAE-NET is trained with all shapes in an input collection using a shape reconstruction loss, without ground-truth segmentations. Specifically, the network takes an input shape and encodes it using a convolutional neural network, whereas the decoder concatenates the resulting feature code with a point coordinate and outputs a value indicating whether the point is inside/outside the shape. Importantly, the decoder is branched: each branch learns a compact representation for one commonly recurring part of the shape collection, e.g., airplane wings. By complementing the shape reconstruction loss with a label loss, BAE-NET is easily tuned for one-shot learning. We show unsupervised, weakly supervised, and one-shot learning results by BAE-NET, demonstrating that using only a couple of exemplars, our network can generally outperform state-of-the-art supervised methods trained on hundreds of segmented shapes.

Abstract (translated)

我们将形状共分割视为一个表示学习问题,并为该任务引入分支自动编码器网络BAE-NET。无监督BAE-NET在输入集合中使用形状重建损失训练所有形状,无地面真值分段。具体来说,网络采用输入形状并使用卷积神经网络对其进行编码,而解码器将生成的特征代码与点坐标连接起来,并输出一个值,指示点是否在形状内部/外部。重要的是,解码器是分支的:每个分支学习形状集合中一个通常重复出现的部分(例如,飞机机翼)的紧凑表示。通过将形状重建损失与标签损失相辅相成,BAE-NET很容易调整为一次学习。我们通过BAE-NET显示了无监督、弱监督和一次性学习的结果,证明仅使用几个示例,我们的网络通常可以优于在数百个分段形状上训练的最先进的监督方法。

URL

https://arxiv.org/abs/1903.11228

PDF

https://arxiv.org/pdf/1903.11228.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot