Paper Reading AI Learner

Exposing GAN-synthesized Faces Using Landmark Locations

2019-03-30 08:27:46
Xin Yang, Yuezun Li, Honggang Qi, Siwei Lyu

Abstract

Generative adversary networks (GANs) have recently led to highly realistic image synthesis results. In this work, we describe a new method to expose GAN-synthesized images using the locations of the facial landmark points. Our method is based on the observations that the facial parts configuration generated by GAN models are different from those of the real faces, due to the lack of global constraints. We perform experiments demonstrating this phenomenon, and show that an SVM classifier trained using the locations of facial landmark points is sufficient to achieve good classification performance for GAN-synthesized faces.

Abstract (translated)

生成对抗网络(gans)最近取得了非常逼真的图像合成结果。在这项工作中,我们描述了一种新的方法来暴露氮化镓合成图像使用的位置的面部标志点。我们的方法是基于观察到的,由于缺少全局约束,由GaN模型生成的面部部件配置与真实的面部不同。我们通过实验证明了这一现象,并证明了利用人脸标志点位置训练的支持向量机分类器足以实现GaN合成人脸的良好分类性能。

URL

https://arxiv.org/abs/1904.00167

PDF

https://arxiv.org/pdf/1904.00167.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot