Paper Reading AI Learner

Learning monocular depth estimation infusing traditional stereo knowledge

2019-04-08 15:59:07
Fabio Tosi, Filippo Aleotti, Matteo Poggi, Stefano Mattoccia

Abstract

Depth estimation from a single image represents a fascinating, yet challenging problem with countless applications. Recent works proved that this task could be learned without direct supervision from ground truth labels leveraging image synthesis on sequences or stereo pairs. Focusing on this second case, in this paper we leverage stereo matching in order to improve monocular depth estimation. To this aim we propose monoResMatch, a novel deep architecture designed to infer depth from a single input image by synthesizing features from a different point of view, horizontally aligned with the input image, performing stereo matching between the two cues. In contrast to previous works sharing this rationale, our network is the first trained end-to-end from scratch. Moreover, we show how obtaining proxy ground truth annotation through traditional stereo algorithms, such as Semi-Global Matching, enables more accurate monocular depth estimation still countering the need for expensive depth labels by keeping a self-supervised approach. Exhaustive experimental results prove how the synergy between i) the proposed monoResMatch architecture and ii) proxy-supervision attains state-of-the-art for self-supervised monocular depth estimation. The code is publicly available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/1904.04144

PDF

https://arxiv.org/pdf/1904.04144


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot