Paper Reading AI Learner

Apply Chinese Radicals Into Neural Machine Translation: Deeper Than Character Level

2018-05-08 15:27:38
Shaohui Kuang, Lifeng Han

Abstract

In neural machine translation (NMT), researchers face the challenge of un-seen (or out-of-vocabulary OOV) words translation. To solve this, some researchers propose the splitting of western languages such as English and German into sub-words or compounds. In this paper, we try to address this OOV issue and improve the NMT adequacy with a harder language Chinese whose characters are even more sophisticated in composition. We integrate the Chinese radicals into the NMT model with different settings to address the unseen words challenge in Chinese to English translation. On the other hand, this also can be considered as semantic part of the MT system since the Chinese radicals usually carry the essential meaning of the words they are constructed in. Meaningful radicals and new characters can be integrated into the NMT systems with our models. We use an attention-based NMT system as a strong baseline system. The experiments on standard Chinese-to-English NIST translation shared task data 2006 and 2008 show that our designed models outperform the baseline model in a wide range of state-of-the-art evaluation metrics including LEPOR, BEER, and CharacTER, in addition to the traditional BLEU and NIST scores, especially on the adequacy-level translation. We also have some interesting findings from the results of our various experiment settings about the performance of words and characters in Chinese NMT, which is different with other languages. For instance, the full character level NMT may perform very well or the state of the art in some other languages as researchers demonstrated recently, however, in the Chinese NMT model, word boundary knowledge is important for the model learning.

Abstract (translated)

URL

https://arxiv.org/abs/1805.01565

PDF

https://arxiv.org/pdf/1805.01565.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot