Paper Reading AI Learner

Predicting Domain Generation Algorithms with Long Short-Term Memory Networks

2016-11-02 20:34:56
Jonathan Woodbridge, Hyrum S. Anderson, Anjum Ahuja, Daniel Grant

Abstract

Various families of malware use domain generation algorithms (DGAs) to generate a large number of pseudo-random domain names to connect to a command and control (C&C) server. In order to block DGA C&C traffic, security organizations must first discover the algorithm by reverse engineering malware samples, then generating a list of domains for a given seed. The domains are then either preregistered or published in a DNS blacklist. This process is not only tedious, but can be readily circumvented by malware authors using a large number of seeds in algorithms with multivariate recurrence properties (e.g., banjori) or by using a dynamic list of seeds (e.g., bedep). Another technique to stop malware from using DGAs is to intercept DNS queries on a network and predict whether domains are DGA generated. Such a technique will alert network administrators to the presence of malware on their networks. In addition, if the predictor can also accurately predict the family of DGAs, then network administrators can also be alerted to the type of malware that is on their networks. This paper presents a DGA classifier that leverages long short-term memory (LSTM) networks to predict DGAs and their respective families without the need for a priori feature extraction. Results are significantly better than state-of-the-art techniques, providing 0.9993 area under the receiver operating characteristic curve for binary classification and a micro-averaged F1 score of 0.9906. In other terms, the LSTM technique can provide a 90% detection rate with a 1:10000 false positive (FP) rate---a twenty times FP improvement over comparable methods. Experiments in this paper are run on open datasets and code snippets are provided to reproduce the results.

Abstract (translated)

URL

https://arxiv.org/abs/1611.00791

PDF

https://arxiv.org/pdf/1611.00791.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot