Paper Reading AI Learner

Dynamic Gesture Recognition by Using CNNs and Star RGB: a Temporal Information Condensation

2019-04-10 00:39:32
Clebeson Canuto dos Santos, Jorge Leonid Aching Samatelo, Raquel Frizera Vassallo


With the advance of technologies, machines are increasingly present in people's daily lives. Thus, there has been more and more effort for developing interfaces, such as dynamic gestures, that provide an intuitive way of interaction. Currently, the most common trend is to use multimodal data, as depth and skeleton information, to try to recognize dynamic gestures. However, the use of only color information would be more interesting, once RGB cameras are usually found in almost every public place, and could be used for gesture recognition without the need to install other equipment. The main problem with this approach is the difficulty of representing spatio-temporal information using just color. With this in mind, we propose a technique that we called Star RGB, capable of describing a videoclip containing a dynamic gesture as an RGB image. This image is then passed to a classifier formed by two Resnet CNN's, a soft-attention ensemble, and a multilayer perceptron, which returns the predicted class label that indicates to which type of gesture the input video belongs. Experiments were carried out using the Montalbano and GRIT datasets. On the Montalbano dataset, the proposed approach achieved an accuracy of 94.58%, this result reaches the state-of-the-art using this dataset, considering only color information. On the GRIT dataset, our proposal achieves more than 98% of accuracy, recall, precision, and F1-score, outperforming the reference approach in more than 6%.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot