Paper Reading AI Learner

Gaze Estimation on Spresense

2023-11-20 08:01:17
Thomas Ruegg, Pietro Bonazzi, Andrea Ronco

Abstract

Gaze estimation is a valuable technology with numerous applications in fields such as human-computer interaction, virtual reality, and medicine. This report presents the implementation of a gaze estimation system using the Sony Spresense microcontroller board and explores its performance in latency, MAC/cycle, and power consumption. The report also provides insights into the system's architecture, including the gaze estimation model used. Additionally, a demonstration of the system is presented, showcasing its functionality and performance. Our lightweight model TinyTrackerS is a mere 169Kb in size, using 85.8k parameters and runs on the Spresense platform at 3 FPS.

Abstract (translated)

凝视估计是一种有价值的技术,在诸如人机交互、虚拟现实和医疗等领域具有众多应用。本报告使用索尼Spresense微控制器板实现了凝视估计系统的部署,并探讨了其在延迟、MAC循环和功耗方面的性能。报告还提供了系统架构的见解,包括使用的凝视估计模型。此外,系统功能和性能的演示也被呈现出来。我们的轻量级模型TinyTrackerS仅占169Kb,使用85.8k个参数,并运行在Spresense平台上,采样率为3 FPS。

URL

https://arxiv.org/abs/2308.12313

PDF

https://arxiv.org/pdf/2308.12313.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot