Paper Reading AI Learner

Volumetric Cloud Field Reconstruction

2023-11-29 14:19:40
Jacob Lin, Miguel Farinha, Edward Gryspeerdt, Ronald Clark

Abstract

Volumetric phenomena, such as clouds and fog, present a significant challenge for 3D reconstruction systems due to their translucent nature and their complex interactions with light. Conventional techniques for reconstructing scattering volumes rely on controlled setups, limiting practical applications. This paper introduces an approach to reconstructing volumes from a few input stereo pairs. We propose a novel deep learning framework that integrates a deep stereo model with a 3D Convolutional Neural Network (3D CNN) and an advection module, capable of capturing the shape and dynamics of volumes. The stereo depths are used to carve empty space around volumes, providing the 3D CNN with a prior for coping with the lack of input views. Refining our output, the advection module leverages the temporal evolution of the medium, providing a mechanism to infer motion and improve temporal consistency. The efficacy of our system is demonstrated through its ability to estimate density and velocity fields of large-scale volumes, in this case, clouds, from a sparse set of stereo image pairs.

Abstract (translated)

体积现象(如云和雾)对 3D 重建系统来说是一个显著的挑战,由于它们的透明性质以及与光线复杂的相互作用。传统的散射体积重建方法依赖于控制设置,限制了其实用性。本文提出了一种从几个输入立体对中重构体积的方法。我们提出了一种新颖的深度学习框架,将深度立体模型与 3D 卷积神经网络(3D CNN)和加速度模块相结合,能够捕捉体积的形状和动态。立体深度被用来在体积周围挖空空间,为 3D CNN 提供了一种应对缺少输入视图的先前经验。通过优化我们的输出,加速度模块利用了中场的时变性,提供了一种机制来推断运动并改善时间一致性。我们系统的有效性通过其能够从稀疏的立体图像对中估计大规模体积的密度和速度场来证明。在这种情况下,我们的大规模云。

URL

https://arxiv.org/abs/2311.17657

PDF

https://arxiv.org/pdf/2311.17657.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot