Abstract
Modeling dynamic, large-scale urban scenes is challenging due to their highly intricate geometric structures and unconstrained dynamics in both space and time. Prior methods often employ high-level architectural priors, separating static and dynamic elements, resulting in suboptimal capture of their synergistic interactions. To address this challenge, we present a unified representation model, called Periodic Vibration Gaussian (PVG). PVG builds upon the efficient 3D Gaussian splatting technique, originally designed for static scene representation, by introducing periodic vibration-based temporal dynamics. This innovation enables PVG to elegantly and uniformly represent the characteristics of various objects and elements in dynamic urban scenes. To enhance temporally coherent representation learning with sparse training data, we introduce a novel flow-based temporal smoothing mechanism and a position-aware adaptive control strategy. Extensive experiments on Waymo Open Dataset and KITTI benchmarks demonstrate that PVG surpasses state-of-the-art alternatives in both reconstruction and novel view synthesis for both dynamic and static scenes. Notably, PVG achieves this without relying on manually labeled object bounding boxes or expensive optical flow estimation. Moreover, PVG exhibits 50/6000-fold acceleration in training/rendering over the best alternative.
Abstract (translated)
建模动态、大尺度城市场景具有挑战性,因为它们具有高度复杂的几何结构和在空间和时间上的无约束动力学。先前的方法通常采用高级的建筑先验,分离静态和动态元素,导致其协同作用的捕捉效果往往不理想。为了应对这一挑战,我们提出了一个统一的表示模型,称为周期振动高斯(PVG)。PVG在高效3D高斯平铺技术的基础上,引入了周期振动为基础的时间动态。这一创新使得PVG能够优雅且均匀地表示动态城市场景中各种物体和元素的特点。为了通过稀疏训练数据增强时间一致性表示学习,我们引入了一种新的流体为基础的时间平滑机制和位置感知自控制策略。在Waymo Open Dataset和KITTI基准上进行的广泛实验证明,PVG在重构和生成新视图方面都超过了最先进的替代方法,特别是在动态和静态场景。值得注意的是,PVG在没有依赖于手动标记的对象边界框或昂贵的光学流估计的情况下实现这一目标。此外,PVG在训练/渲染过程中的加速表现出50/6000-倍的优势。
URL
https://arxiv.org/abs/2311.18561