Paper Reading AI Learner

FineControlNet: Fine-level Text Control for Image Generation with Spatially Aligned Text Control Injection

2023-12-14 18:59:43
Hongsuk Choi, Isaac Kasahara, Selim Engin, Moritz Graule, Nikhil Chavan-Dafle, Volkan Isler

Abstract

Recently introduced ControlNet has the ability to steer the text-driven image generation process with geometric input such as human 2D pose, or edge features. While ControlNet provides control over the geometric form of the instances in the generated image, it lacks the capability to dictate the visual appearance of each instance. We present FineControlNet to provide fine control over each instance's appearance while maintaining the precise pose control capability. Specifically, we develop and demonstrate FineControlNet with geometric control via human pose images and appearance control via instance-level text prompts. The spatial alignment of instance-specific text prompts and 2D poses in latent space enables the fine control capabilities of FineControlNet. We evaluate the performance of FineControlNet with rigorous comparison against state-of-the-art pose-conditioned text-to-image diffusion models. FineControlNet achieves superior performance in generating images that follow the user-provided instance-specific text prompts and poses compared with existing methods. Project webpage: this https URL

Abstract (translated)

近年来引入的ControlNet具有通过几何输入(如人体2D姿势或边缘特征)操纵文本驱动图像生成的能力。然而,ControlNet在控制生成图像的几何形状方面提供了控制,但它缺乏规定每个实例的视觉外观的能力。我们提出了FineControlNet,以提供对每个实例外观的精细控制,同时保持精确的姿势控制能力。具体来说,我们通过人体姿势图像和实例级别的文本提示来开发和演示FineControlNet。实例特定文本提示和2D姿势在潜在空间中的空间对齐允许FineControlNet实现精细控制能力。我们通过与最先进的姿势条件文本到图像扩散模型进行严格的比较来评估FineControlNet的表现。与现有方法相比,FineControlNet在生成遵循用户提供的实例特定文本提示和姿势的图像方面表现出卓越的性能。项目网页:此https URL

URL

https://arxiv.org/abs/2312.09252

PDF

https://arxiv.org/pdf/2312.09252.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot