Paper Reading AI Learner

Oracle performance for visual captioning

2016-09-14 16:55:29
Li Yao, Nicolas Ballas, Kyunghyun Cho, John R. Smith, Yoshua Bengio

Abstract

The task of associating images and videos with a natural language description has attracted a great amount of attention recently. Rapid progress has been made in terms of both developing novel algorithms and releasing new datasets. Indeed, the state-of-the-art results on some of the standard datasets have been pushed into the regime where it has become more and more difficult to make significant improvements. Instead of proposing new models, this work investigates the possibility of empirically establishing performance upper bounds on various visual captioning datasets without extra data labelling effort or human evaluation. In particular, it is assumed that visual captioning is decomposed into two steps: from visual inputs to visual concepts, and from visual concepts to natural language descriptions. One would be able to obtain an upper bound when assuming the first step is perfect and only requiring training a conditional language model for the second step. We demonstrate the construction of such bounds on MS-COCO, YouTube2Text and LSMDC (a combination of M-VAD and MPII-MD). Surprisingly, despite of the imperfect process we used for visual concept extraction in the first step and the simplicity of the language model for the second step, we show that current state-of-the-art models fall short when being compared with the learned upper bounds. Furthermore, with such a bound, we quantify several important factors concerning image and video captioning: the number of visual concepts captured by different models, the trade-off between the amount of visual elements captured and their accuracy, and the intrinsic difficulty and blessing of different datasets.

Abstract (translated)

URL

https://arxiv.org/abs/1511.04590

PDF

https://arxiv.org/pdf/1511.04590.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot