Paper Reading AI Learner

Image Specificity

2015-04-16 13:13:46
Mainak Jas, Devi Parikh

Abstract

For some images, descriptions written by multiple people are consistent with each other. But for other images, descriptions across people vary considerably. In other words, some images are specific $-$ they elicit consistent descriptions from different people $-$ while other images are ambiguous. Applications involving images and text can benefit from an understanding of which images are specific and which ones are ambiguous. For instance, consider text-based image retrieval. If a query description is moderately similar to the caption (or reference description) of an ambiguous image, that query may be considered a decent match to the image. But if the image is very specific, a moderate similarity between the query and the reference description may not be sufficient to retrieve the image. In this paper, we introduce the notion of image specificity. We present two mechanisms to measure specificity given multiple descriptions of an image: an automated measure and a measure that relies on human judgement. We analyze image specificity with respect to image content and properties to better understand what makes an image specific. We then train models to automatically predict the specificity of an image from image features alone without requiring textual descriptions of the image. Finally, we show that modeling image specificity leads to improvements in a text-based image retrieval application.

Abstract (translated)

URL

https://arxiv.org/abs/1502.04569

PDF

https://arxiv.org/pdf/1502.04569.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot