Paper Reading AI Learner

Semantic Draw Engineering for Text-to-Image Creation

2023-12-23 05:35:15
Yang Li, Huaqiang Jiang, Yangkai Wu

Abstract

Text-to-image generation is conducted through Generative Adversarial Networks (GANs) or transformer models. However, the current challenge lies in accurately generating images based on textual descriptions, especially in scenarios where the content and theme of the target image are ambiguous. In this paper, we propose a method that utilizes artificial intelligence models for thematic creativity, followed by a classification modeling of the actual painting process. The method involves converting all visual elements into quantifiable data structures before creating images. We evaluate the effectiveness of this approach in terms of semantic accuracy, image reproducibility, and computational efficiency, in comparison with existing image generation algorithms.

Abstract (translated)

文本到图像生成是通过生成对抗网络(GANs)或Transformer模型进行的。然而,目前的挑战在于根据文本描述准确生成图像,尤其是在目标图像的内容和主题不明确的情况下。在本文中,我们提出了一种利用人工智能模型进行主题创意的方法,并对其进行了分类建模实际绘画过程。该方法在创建图像之前将所有视觉元素转换为可量化的数据结构。我们评估了这种方法在语义准确性、图像可重复性和计算效率方面的有效性,与现有的图像生成算法进行了比较。

URL

https://arxiv.org/abs/2401.04116

PDF

https://arxiv.org/pdf/2401.04116.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot