Paper Reading AI Learner

Deeply Exploit Depth Information for Object Detection

2016-05-08 01:56:50
Saihui Hou, Zilei Wang, Feng Wu

Abstract

This paper addresses the issue on how to more effectively coordinate the depth with RGB aiming at boosting the performance of RGB-D object detection. Particularly, we investigate two primary ideas under the CNN model: property derivation and property fusion. Firstly, we propose that the depth can be utilized not only as a type of extra information besides RGB but also to derive more visual properties for comprehensively describing the objects of interest. So a two-stage learning framework consisting of property derivation and fusion is constructed. Here the properties can be derived either from the provided color/depth or their pairs (e.g. the geometry contour adopted in this paper). Secondly, we explore the fusion method of different properties in feature learning, which is boiled down to, under the CNN model, from which layer the properties should be fused together. The analysis shows that different semantic properties should be learned separately and combined before passing into the final classifier. Actually, such a detection way is in accordance with the mechanism of the primary neural cortex (V1) in brain. We experimentally evaluate the proposed method on the challenging dataset, and have achieved state-of-the-art performance.

Abstract (translated)

URL

https://arxiv.org/abs/1605.02260

PDF

https://arxiv.org/pdf/1605.02260.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot