Paper Reading AI Learner

High-for-Low and Low-for-High: Efficient Boundary Detection from Deep Object Features and its Applications to High-Level Vision

2015-09-21 17:48:23
Gedas Bertasius, Jianbo Shi, Lorenzo Torresani

Abstract

Most of the current boundary detection systems rely exclusively on low-level features, such as color and texture. However, perception studies suggest that humans employ object-level reasoning when judging if a particular pixel is a boundary. Inspired by this observation, in this work we show how to predict boundaries by exploiting object-level features from a pretrained object-classification network. Our method can be viewed as a "High-for-Low" approach where high-level object features inform the low-level boundary detection process. Our model achieves state-of-the-art performance on an established boundary detection benchmark and it is efficient to run. Additionally, we show that due to the semantic nature of our boundaries we can use them to aid a number of high-level vision tasks. We demonstrate that using our boundaries we improve the performance of state-of-the-art methods on the problems of semantic boundary labeling, semantic segmentation and object proposal generation. We can view this process as a "Low-for-High" scheme, where low-level boundaries aid high-level vision tasks. Thus, our contributions include a boundary detection system that is accurate, efficient, generalizes well to multiple datasets, and is also shown to improve existing state-of-the-art high-level vision methods on three distinct tasks.

Abstract (translated)

URL

https://arxiv.org/abs/1504.06201

PDF

https://arxiv.org/pdf/1504.06201.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot